Phytochemical analysis and antibacterial activity of raspberry (Rubus idaeus) fruit extract against Gram-negative multi-drug resistant bacteria from clinical isolates

Authors

DOI:

https://doi.org/10.15328/cb2025_58

Keywords:

raspberry fruit, multi-drug resistant, Gram-negative strains, molecular docking, anthocyanins

Abstract

The basic therapy for microbial infections involves the application of antibiotics. However, overuse of antibiotics has become the major factor for the emergence and dissemination of multi-drug resistant strains. The purpose of our work was to study the phytochemical composition of a thick extract of raspberry fruits, as well as to investigate in vitro and in silico antibacterial activity against clinical multidrug-resistant strains of A. baumannii, P. aeruginosa, K. pneumoniae and E. cloacae. The quantification of biologically active substances (BAS) was accomplished with spectrophotometric, titrimetric and HPLC methods of analysis; antimicrobial effects were evaluated by the well diffusion method, whereas minimum inhibition concentration was determined by well plate method. The total content of phenolic compounds was 0.60 and 10.10%, organic acids – 4.60 and 1.60% for raspberry fruit thick and green tea leaf extract. The total content of anthocyanins in the raspberry fruit thick extract was 110.0 mg/100 g, where cyanidin-3-O-sophoroside was dominated (52.14±1.04 mg/100 g). Theoretical studies have shown that neither a single antibiotic nor anthocyanins are highly effective in inhibiting all antimicrobial mechanisms of resistant Gram-negative bacteria. The thick raspberry fruit extract actively inhibits all resistant strains of A. baumannii, K. pneumoniae, P. aeruginosa and E. cloacae. These findings have shown that to inhibit resistant strains of bacteria, you need to use only a complex drug or dietary supplements of raspberry together, and in turn, herbal medicines are a “lifeline” for their creation and there is a chance of old antimicrobial drugs back in life.

References

1 Mende K, Akers KS, Tyner SD, Bennett JW, Simons MP, et al. (2022) Mil Med 187(Supplement_2):42-51. https://doi.org/10.1093/milmed/usab131

2 Kondratiuk V, Jones BT, Kovalchuk V, Kovalenko I, Ganiuk V, et al. (2021) J Hosp Infect 112:69-76. https://doi.org/10.1016/j.jhin.2021.03.020

3 Petrosillo N, Petersen E, Antoniak S (2023) Lancet Infect Dis 1:1-10. https://doi.org/10.1016/s1473-3099(23)00264-5

4 World Health Organization Regional Office for Europe (WHO/Europe)/European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2022–2020 data. Copenhagen: WHO/Europe; 2022. Web-page: https://www.ecdc.europa.eu/sites/default/files/documents/ECDC-WHO-AMR-report.pdf

5 Schultze T, Hogardt M, Velázquez ES, Hack D, Besier S, et al. (2023) Eurosurveillance 28(1):1-10. https://doi.org/10.2807/1560-7917.es.2023.28.1.2200850

6 Khan R, Islam B, Akram M, Shakil S, Ahmad AA, et al. (2009) Molecules 14(2):586-597. https://doi.org/10.3390/molecules14020586

7 Maslov OY, Kolisnyk SV, Komisarenko MA, Kolisnyk OV, Ponomarenko SV (2021) Pharmacologyonline (3):291-298. https://doi.org/10.5281/zenodo.7813115

8 Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Int J Mol Sci 16(10):24673-24706. https://doi.org/10.3390/ijms161024673

9 Maslov OY, Komisarenko MA, Golik MY, Kolisnyk SV, Altukhov AA, et al. (2023) Vitae 30(1):1-8. https://doi.org/10.17533/udea.vitae.v30n1a351486

10 Maslov O, Kolisnyk S, Komisarenko M, Golik M (2022) Herba Pol 68(1):1-9. https://doi.org/10.2478/hepo-2022-0003

11 Maslov OY, Komisarenko MA, Kolisnyk SV, Golik MY, Doroshenko SR, et al. (2023) News Pharm 106(2):5-12. https://doi.org/10.24959/nphj.23.119

12 Maslov O, Kolesnik S, Komisarenko M, Altukhov A, Dynnyk K, Kostina T (2021) Pharmakeftiki 33(4):304–311. https://doi.org/10.5281/zenodo.7813135

13 Maslov O, Komisarenko M, Ponomarenko S, Horopashna D, Osolodchenko T, et al. (2022) Curr Issues Pharm Med Sci 35(4):229-235. https://doi.org/10.2478/cipms-2022-0040

14 Mbarga MJ, Podoprigora IV, Volina EG, Ermolaev AV, Smolyakova LA (2021) J Pharm Res Int 158-167. https://doi.org/10.9734/jpri/2021/v33i29b31601

15 RCSB PDB: Homepage. RCSB PDB: Homepage; Web-page: https://www.rcsb.org/.

16 PubChem. PubChem; Web-page: https://pubchem.ncbi.nlm.nih.gov/.

17 Tian W, Chen C, Lei X, Zhao J, Liang J. (2018) Nucleic Acids Res 46(W1):W363-W367. https://doi.org/10.1093/nar/gky473

18 Arena ME, Povilonis IS, Borroni V, Pérez E, Pellegrino N, Cacciatore C, Radice S (2023) Horticulturae 9(3):314. https://doi.org/10.3390/horticulturae9030314

19 Szymanowska U, Baraniak B, Bogucka-Kocka A (2018) Molecules 23(7):1812. https://doi.org/10.3390/molecules23071812

20 Abinaya M, Gayathri M (2019) Bioorganic Chem 87:291-301. https://doi.org/10.1016/j.bioorg.2019.03.050

21 Jogula S, Krishna VS, Meda N, Balraju V, Sriram D (2020) Bioorganic Chem 100:103905. https://doi.org/10.1016/j.bioorg.2020.103905

22 Zuo K, Liang L, Du W, Sun X, Liu W, Gou X, et al. (2017) Int J Mol Sci 18(5):761. https://doi.org/10.3390/ijms18050761

23 Abinaya M, Gayathri M (2019) Bioorganic Chem 87:291-301. https://doi.org/10.1016/j.bioorg.2019.03.050

24 Valentini M, Filloux A (2016) J Biol Chem 291(24):12547-12555. https://doi.org/10.1074/jbc.r115.711507

25 Jean SS, Harnod D, Hsueh PR. (2022) Front Cell Infect Microbiol 12. https://doi.org/10.3389/fcimb.2022.823684

26 Aranaga C, Pantoja LD, Martínez EA, Falco A (2022) Int J Mol Sci 23(9):4577. https://doi.org/10.3390/ijms23094577

Downloads

Published

2025-09-30

How to Cite

Maslov, O., Komisarenko, M., Ponomarenko, S., Osolodchenko, T., Kolisnyk, S., & Polishchuk, S. (2025). Phytochemical analysis and antibacterial activity of raspberry (Rubus idaeus) fruit extract against Gram-negative multi-drug resistant bacteria from clinical isolates. Chemical Bulletin of Kazakh National University, 116(3), 12–22. https://doi.org/10.15328/cb2025_58

Similar Articles

You may also start an advanced similarity search for this article.