Cyanethylation of two decahydroquinolone isosters and evaluation of antibacterial properties of new β-aminonitriles
DOI:
https://doi.org/10.15328/cb2025_42Keywords:
decahydroquinolines, structural isomerism, N-cyanoethylation, aza-Michael addition, antibacterial activity, Staphylococcus aureus, cytotoxicity, Structure-Activity RelationshipAbstract
Driven by the growing threat of antimicrobial resistance, the search for novel antibacterial agents has identified decahydroquinoline derivatives as promising structural scaffolds. The aim of this work was a comparative study of the synthetic reactivity of two decahydroquinolone isomers and the subsequent antimicrobial activity of their N-cyanoethylated products. The target compounds were synthesized via an aza-Michael addition, wherein the influence of stereochemistry on reactivity was investigated, and a Cu(OAc)₂ catalyst was optimized for the sterically hindered isomer. Antimicrobial activity was assessed by the broth microdilution method, while cytotoxicity was evaluated using an MTT assay on the MDCK kidney cell line. It was established that the position of the methyl group within the decahydroquinoline core is a critical determinant of both the steric accessibility for N-cyanoethylation and the resulting biological activity. The N-(β’-cyanoethyl)-2a-methyldecahydroquinolin-4-one exhibited selective bactericidal activity against the Gram-positive strain Staphylococcus aureus (MBC = 5 mg/mL), whereas its 10-methyl substituted analogue was completely inactive. Importantly, the active compound demonstrated low cytotoxicity (CTC₅₀ > 0.8 mg/mL), indicating a favorable selectivity profile. These findings identify the 2a-methyldecahydroquinolin-4-one fragment as a promising scaffold for the rational design of new selective antibacterial agents.
References
1. Larsson DGJ, Flach C-F (2022) Nat Rev Microbiol 20:257–269. http://doi.org/10.1038/s41579-021-00649-x
2. Davies J, Davies D (2010) Microbiology and Molecular Biology Reviews 74:417–433. http://doi.org/10.1128/MMBR.00016-10
3. Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) J Antibiot (Tokyo) 63:423–430. http://doi.org/10.1038/ja.2010.62
4. Livermore DM (2004) Clinical Microbiology and Infection 10:1–9. http://doi.org/10.1111/j.1465-0691.2004.1004.x
5. Rusu A, Moga I-M, Uncu L, Hancu G (2023) Pharmaceutics 15:2554. http://doi.org/10.3390/pharmaceutics15112554
6. Harrison T (1996) Contemporary Organic Synthesis 3:259. http://doi.org/10.1039/co9960300259
7. Dinodia M (2023) Mini Rev Org Chem 20:735–747. http://doi.org/10.2174/1570193X19666211231101747
8. Ferreira M-JU (2022) Molecules 27:1347. http://doi.org/10.3390/molecules27041347
9. Pelss A, Koskinen AMP (2013) Chem Heterocycl Compd (N Y) 49:226–240. http://doi.org/10.1007/s10593-013-1239-8
10. Bai DL, Tang XC, He XC (2000) Curr Med Chem 7:355–374. http://doi.org/10.2174/0929867003375281
11. Wang W, Ma F, Cheung YT, Zeng G, Zhou Y, Chen Z, et al. (2023) J Med Chem 66:11201–11215. http://doi.org/10.1021/acs.jmedchem.3c00659
12. Liu J-S, Zhu Y-L, Yu C-M, Zhou Y-Z, Han Y-Y, Wu F-W, et al. (1986) Can J Chem 64:837–839. http://doi.org/10.1139/v86-137
13. Babu M, Pitchumani K, Ramesh P (2012) Eur J Med Chem 47:608–614. http://doi.org/10.1016/j.ejmech.2011.10.045
14. Macfoy C, Danosus D, Sandit R, Jones TH, Garraffo HM, Spande TF, et al. (2005) Zeitschrift für Naturforschung C 60:932–937. http://doi.org/10.1515/znc-2005-11-1218
15. Scotti C, Barlow JW (2022)Nat Prod Commun. http://doi.org/10.1177/1934578X221099973
16. Egelkamp R, Zimmermann T, Schneider D, Hertel R, Daniel R (2019) Front Environ Sci 7:103. http://doi.org/10.3389/fenvs.2019.00103
17. Sokolov DV, Litvinenko GS, Khludneva KI (1959) Russ J Gen Chem 29:1112-1122. (In Russian)
18. Litvinenko GS, Khludneva KI, Sokolov DV, Yalovenko EG, Volzhenina TB (1979) Izv Akad Nauk Kaz SSR Ser Khim 5:51-56. (In Russian)
19. Rulev AY (2011) Russian Chemical Reviews 80:197–218. http://doi.org/10.1070/RC2011v080n03ABEH004162
20. Suminov SI, Kost AN (1969) Russian Chemical Reviews 38:884–899. http://doi.org/10.1070/RC1969v038n11ABEH001860
21. Turmukhanova M, Chernykh V, Ospanov M, Kelzhanova N, Mukhanbetkaliev A (2012) Chemical Bulletin of Kazakh National University 65(1):428–432. (In Russian)
22. Vulfson NS, Zaikin VG, Mikaya AI (1986) Mass-spektrometriya organicheskikh soedinenii. Khimiya, Moscow. (In Russian)
23. Krauß J, Hornacek M, Müller C, Staudacher V, Stadler M, Bracher F (2015) Sci Pharm 83:1–14. http://doi.org/10.3797/scipharm.1409-13
24. França FD, Ferreira VS, de Oliveira SK, de Oliveira ACF, de Melo LC, et al. (2015) Journal of Cellular Biochemistry 116(12): 2736-2747. http://doi.org/10.1002/jcb.25206
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.





