New glycerol-based deep eutectic solvents as green extragents for diesel fuel

Authors

DOI:

https://doi.org/10.15328/cb2025_64

Keywords:

deep eutectic solvents, glycerol, diesel, gas chromatography, ASTM standards, SDG 6, SDG 13

Abstract

The dearomatization, denitrification and oxidative desulfurization of commercial diesel fuels were investigated using glycerol-based deep eutectic solvents. The optimal conditions of liquid-liquid extraction processes were chosen as room and 90°C temperatures and 3 hours of mixing time. Ammonium chloride-glycerol, triethylammonium acetate-glycerol and choline chloride-glycerol were used as extractive solvents in the purification processes. Diesel-Deep eutectic solvents (Diesel-DESs) were taken as the volume ratios of 1:1 for the dearomatization and denitrification processes. The volume ratios of Diesel-DESs-H2O2 were 1:1:2 for the oxidative desulfurization. H2O2 was selected as the oxidative agent of oxidation desulfurization. Before and after separation processes, the exploitation properties were studied by ASTM standards and compared to commercial diesel. All separation processes were controlled by gas chromatography and 1H NMR methods. Based on the NMR analysis, NH4Cl/6Glycerol with H₂O₂ and ChCl/6Glycerol were the most effective extractive agents for purified diesel samples, from the alkyl aromatic, naphthenic, and heteroatomic compounds.

Author Biographies

I.G. Mamedov, Baku State University, Baku, Azerbaijan

Baku State University, Faculty of Chemistry, Head of the department Petrochemistry and Chemical Technology, Doctor of science, Professor, e-mail: bsu.nmrlab@gmail.com

S.E. Niftullayeva, Baku State University, Baku, Azerbaijan

Baku State University, Faculty of Chemistry, postgraduate student, e-mail: sayadniftullayeva7@gmail.com

Y.V. Mamedova, Baku State University, Baku, Azerbaijan

Baku State University, Faculty of Chemistry, Lecturer at the department of Petrochemistry and Chemical Technology, PhD, e-mail: mamedova_yegane75@mail.ru

References

1. Zarin L, Saien J, Dastan D, Jafari F (2025) J Mol Liq 425:127197. https://doi.org/10.1016/j.molliq.2025.127197

2. Salah H, Nancarrow P, Othman A (2023) ACS Omega 8(33):30001-30023. https://doi.org/10.1021/acsomega.3c01952

3. Suhaimi H, Hizaddin H, Wazeer I, Blidi L, Hashim M, Hadj-Kali M (2021) ACS Omega 6(34):22317–22332. https://doi.org/10.1021/acsomega.1c03034

4. Wichmann H.-E (2007) Inhal Toxicol 19(1):241–244. https://doi.org/ 10.1080/08958370701498075

5. Lemaoui T, Benguerba Y, Darwish A, Hatab F, Warrag S, Kroon M, Alnashef I (2021) Sep Pur Tech 256:117861. https://doi.org/10.1016/j.seppur.2020.117861

6. Julião D, Gomes A, Pillinger M, Lopes A, Valença R, Ribeirio J, Gonçalves I, Balula S (2020) J Mol Liq 309:113093. https://doi.org/10.1016/j.molliq.2020.113093

7. Babich IV, Moulijn JA (2003) Fuel 82(6):607–631. https://doi.org/10.1016/S0016-2361(02)00324-1

8. Winkler SL, Anderson JE, Garza L et al. (2018) npj Clim Atmos Sci 1(1):26. https://doi.org/10.1038/s41612-018-0037-5

9. Lima F, Gouvenaux J, Branco L et al. (2018) Fuel 234:414–421. https://doi.org/10.1016/j.fuel.2018.07.043

10. Verma DK, Tombe K (2002) AIHA J 63(2):225–230. https://doi.org/10.1080/15428110208984708

11. Mochida I, Choi KH (2004) J Jpn Petrol Inst 47(3):145–163. https://doi.org/10.1627/jpi.47.145

12. Ibrahimova MJ et al. (2018) Proc Petrochem Oil Refin 19(3): 302–313.

13. Khalilov AB, Ibrahimova MJ, Huseynov HJ, Abbasov VM (2019) Khim Interesakh Ustoich Razvit 27(2):123–133. https://doi.org/10.15372/KhUR2019117

14. Zhang S, Zhang Q, Zhang ZC (2004) Ind Eng Chem Res 43(2):614–622. https://doi.org/10.1021/ie030561+

15. Perna FM, Vitale P, Capriati V (2020) Curr Opin Green Sustain Chem 21:27–33. https://doi.org/10.1016/j.cogsc.2019.09.004

16. Smith EL, Abbott AP, Ryder KS (2014) Chem Rev 114(21):11060–11082. https://doi.org/10.1021/cr300162p

17. Hayyan M, Hashim MA, Hayyan A et al. (2013) Chemosphere 90(7):2193–2195. https://doi.org/10.1016/j.chemosphere.2012.11.004

18. Francisco M, Andrian B, Kroon MC (2013) Angew Chem Int Ed 52(11):3074–3085. https://doi.org/10.1002/anie.201207548

19. Warrag SEE, Peters CJ, Kroon MC (2017) Curr Opin Green Sustain Chem 5:55–60. https://doi.org/10.1016/j.cogsc.2017.03.013

20. Juliao D, Gomes AC, Pillinger M et al. (2020) J Mol Liq 309:113093. https://doi.org/10.1016/j.molliq.2020.113093

21. Shirazinia SR, Semnani A, Nekoeinia M et al. (2020) J Mol Liq 301:112364. https://doi.org/10.1016/j.molliq.2019.112364

22. Rahma WSA, Mjalli FS, Al-Wahaibi T et al. (2017) Chem Eng Res Des 120:271–283. https://doi.org/10.1016/j.cherd.2017.02.025

23. Yin J, Wang J, Li Zh et al. (2015) Green Chem. 17(9):4552–4559. https://doi.org/10.1039/C5GC00709G

24. Lima F, Gouvenaux J, Branco LC et al. (2018) Fuel 234:414-421. https://doi.org/10.1016/j.fuel.2018.07.043

25. Hizaddin HF, Hadj-Kali MK, Ramalingam A et al. (2016) J Chem Thermodyn 95:164–173. https://doi.org/10.1016/j.jct.2015.12.009

26. Li Z, Liu D, Men Z et al. Green Chem (2018) 20(13):3112–3120. https://doi.org/10.1039/C8GC00828K

27. Larriba M, Ayuso M, Navarro P et al. (2018) ACS Sustain Chem Eng 6(1):1039–1047. https://doi.org/10.1021/acssuschemeng.7b03362

28. Warrag SEE, et al. (2020) Ind Eng Chem Res 59(25):11723–11733. https://doi.org/10.1021/acs.iecr.0c01360

29. Niftullayeva SA, Mamedov IG (2023) Bakı Universitetinin Xəbərləri 2: 5–13.

30. Niftullayeva SA, Mamedova Y.V, Mamedov IG (2024) Proceed Univer Appl Chem Biotech 14(1): 129–134. https://doi.org/0000-0002-5757-9899

31. Kapur GS, Ecker A, Meusinger R (2001) Energy Fuels 15(4):943–948. https://doi.org/10.1021/ef010021u

32. Kapur GS, Singh AP, Sarpal AS (2000) Fuel 79(9):1023–1029. https://doi.org/10.1016/S0016

Downloads

Published

2025-12-30

How to Cite

Mamedov, I., Niftullayeva, S., & Mamedova, Y. (2025). New glycerol-based deep eutectic solvents as green extragents for diesel fuel. Chemical Bulletin of Kazakh National University, 117(4), 14–21. https://doi.org/10.15328/cb2025_64

Similar Articles

You may also start an advanced similarity search for this article.