New glycerol-based deep eutectic solvents as green extragents for diesel fuel
DOI:
https://doi.org/10.15328/cb2025_64Keywords:
deep eutectic solvents, glycerol, diesel, gas chromatography, ASTM standards, SDG 6, SDG 13Abstract
The dearomatization, denitrification and oxidative desulfurization of commercial diesel fuels were investigated using glycerol-based deep eutectic solvents. The optimal conditions of liquid-liquid extraction processes were chosen as room and 90°C temperatures and 3 hours of mixing time. Ammonium chloride-glycerol, triethylammonium acetate-glycerol and choline chloride-glycerol were used as extractive solvents in the purification processes. Diesel-Deep eutectic solvents (Diesel-DESs) were taken as the volume ratios of 1:1 for the dearomatization and denitrification processes. The volume ratios of Diesel-DESs-H2O2 were 1:1:2 for the oxidative desulfurization. H2O2 was selected as the oxidative agent of oxidation desulfurization. Before and after separation processes, the exploitation properties were studied by ASTM standards and compared to commercial diesel. All separation processes were controlled by gas chromatography and 1H NMR methods. Based on the NMR analysis, NH4Cl/6Glycerol with H₂O₂ and ChCl/6Glycerol were the most effective extractive agents for purified diesel samples, from the alkyl aromatic, naphthenic, and heteroatomic compounds.
References
1. Zarin L, Saien J, Dastan D, Jafari F (2025) J Mol Liq 425:127197. https://doi.org/10.1016/j.molliq.2025.127197
2. Salah H, Nancarrow P, Othman A (2023) ACS Omega 8(33):30001-30023. https://doi.org/10.1021/acsomega.3c01952
3. Suhaimi H, Hizaddin H, Wazeer I, Blidi L, Hashim M, Hadj-Kali M (2021) ACS Omega 6(34):22317–22332. https://doi.org/10.1021/acsomega.1c03034
4. Wichmann H.-E (2007) Inhal Toxicol 19(1):241–244. https://doi.org/ 10.1080/08958370701498075
5. Lemaoui T, Benguerba Y, Darwish A, Hatab F, Warrag S, Kroon M, Alnashef I (2021) Sep Pur Tech 256:117861. https://doi.org/10.1016/j.seppur.2020.117861
6. Julião D, Gomes A, Pillinger M, Lopes A, Valença R, Ribeirio J, Gonçalves I, Balula S (2020) J Mol Liq 309:113093. https://doi.org/10.1016/j.molliq.2020.113093
7. Babich IV, Moulijn JA (2003) Fuel 82(6):607–631. https://doi.org/10.1016/S0016-2361(02)00324-1
8. Winkler SL, Anderson JE, Garza L et al. (2018) npj Clim Atmos Sci 1(1):26. https://doi.org/10.1038/s41612-018-0037-5
9. Lima F, Gouvenaux J, Branco L et al. (2018) Fuel 234:414–421. https://doi.org/10.1016/j.fuel.2018.07.043
10. Verma DK, Tombe K (2002) AIHA J 63(2):225–230. https://doi.org/10.1080/15428110208984708
11. Mochida I, Choi KH (2004) J Jpn Petrol Inst 47(3):145–163. https://doi.org/10.1627/jpi.47.145
12. Ibrahimova MJ et al. (2018) Proc Petrochem Oil Refin 19(3): 302–313.
13. Khalilov AB, Ibrahimova MJ, Huseynov HJ, Abbasov VM (2019) Khim Interesakh Ustoich Razvit 27(2):123–133. https://doi.org/10.15372/KhUR2019117
14. Zhang S, Zhang Q, Zhang ZC (2004) Ind Eng Chem Res 43(2):614–622. https://doi.org/10.1021/ie030561+
15. Perna FM, Vitale P, Capriati V (2020) Curr Opin Green Sustain Chem 21:27–33. https://doi.org/10.1016/j.cogsc.2019.09.004
16. Smith EL, Abbott AP, Ryder KS (2014) Chem Rev 114(21):11060–11082. https://doi.org/10.1021/cr300162p
17. Hayyan M, Hashim MA, Hayyan A et al. (2013) Chemosphere 90(7):2193–2195. https://doi.org/10.1016/j.chemosphere.2012.11.004
18. Francisco M, Andrian B, Kroon MC (2013) Angew Chem Int Ed 52(11):3074–3085. https://doi.org/10.1002/anie.201207548
19. Warrag SEE, Peters CJ, Kroon MC (2017) Curr Opin Green Sustain Chem 5:55–60. https://doi.org/10.1016/j.cogsc.2017.03.013
20. Juliao D, Gomes AC, Pillinger M et al. (2020) J Mol Liq 309:113093. https://doi.org/10.1016/j.molliq.2020.113093
21. Shirazinia SR, Semnani A, Nekoeinia M et al. (2020) J Mol Liq 301:112364. https://doi.org/10.1016/j.molliq.2019.112364
22. Rahma WSA, Mjalli FS, Al-Wahaibi T et al. (2017) Chem Eng Res Des 120:271–283. https://doi.org/10.1016/j.cherd.2017.02.025
23. Yin J, Wang J, Li Zh et al. (2015) Green Chem. 17(9):4552–4559. https://doi.org/10.1039/C5GC00709G
24. Lima F, Gouvenaux J, Branco LC et al. (2018) Fuel 234:414-421. https://doi.org/10.1016/j.fuel.2018.07.043
25. Hizaddin HF, Hadj-Kali MK, Ramalingam A et al. (2016) J Chem Thermodyn 95:164–173. https://doi.org/10.1016/j.jct.2015.12.009
26. Li Z, Liu D, Men Z et al. Green Chem (2018) 20(13):3112–3120. https://doi.org/10.1039/C8GC00828K
27. Larriba M, Ayuso M, Navarro P et al. (2018) ACS Sustain Chem Eng 6(1):1039–1047. https://doi.org/10.1021/acssuschemeng.7b03362
28. Warrag SEE, et al. (2020) Ind Eng Chem Res 59(25):11723–11733. https://doi.org/10.1021/acs.iecr.0c01360
29. Niftullayeva SA, Mamedov IG (2023) Bakı Universitetinin Xəbərləri 2: 5–13.
30. Niftullayeva SA, Mamedova Y.V, Mamedov IG (2024) Proceed Univer Appl Chem Biotech 14(1): 129–134. https://doi.org/0000-0002-5757-9899
31. Kapur GS, Ecker A, Meusinger R (2001) Energy Fuels 15(4):943–948. https://doi.org/10.1021/ef010021u
32. Kapur GS, Singh AP, Sarpal AS (2000) Fuel 79(9):1023–1029. https://doi.org/10.1016/S0016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.





