Synthesis of an interpolyelectrolyte complex from fluorescently labeled chitosan and polyacrylic acid

Authors

DOI:

https://doi.org/10.15328/cb2025_62

Keywords:

interpolyelectrolyte complex, natural polymer, synthetic polymer, chitosan, polyacrylic acid, fluorescently labeled polymer, erosion of soil

Abstract

In this study, fluorescently labeled samples of chitosan and poly (acrylic acid) (PAA) were synthesized for the first time to investigate the penetration depth of polymers and interpolyelectrolyte complex (IPEC) into forest soil, as well as their resistance to leaching. The synthesis of fluorescently labeled polymers and IPEC was carried out by mixing aqueous solutions using fluorescein isothiocyanate (FITC) and fluoresceinamine (FA). The composition and structure of the synthesized products were identified by infrared (IR) spectroscopy. The optimal molar ratio of the resulting IPEC [Chitosan]: [PAA] = [1:9] was confirmed by gravimetric analysis. Rheoviscosimetric studies revealed pseudoplastic flow behavior for chitosan and dilatant flow for PAA and IPEC. In laboratory-scale model experiments, the mechanical strength and anti-erosion performance of soil–polymer structuring agents were evaluated. Treatment of soil with IPEC led to the formation of a protective soil–polymer film that significantly enhanced resistance to wind erosion (up to 93%) and water erosion (up to 90%), and increased the mechanical strength of soil aggregates by a factor of 13. The study demonstrates that IPEC exhibits superior leaching resistance compared to individual polymers, which is of practical importance for soil structuring and stabilization under erosion-prone conditions.

Author Biographies

N.N. Berikbol, Shakarim University, Semey, Kazakhstan

Research scientist at Shakarim Lab, Semey, Kazakhstan, е-mail: nazira428@bk.ru

Zh.S. Kassymova, Shakarim University, Semey, Kazakhstan

Candidate of biological sciences, аssociate professor, аssociate professor of the Department of Chemistry and Ecology of Shakarim University, Semey, Kazakhstan, е-mail: kasymova-z@mail.ru

L.K. Orazzhanova , Shakarim University, Semey, Kazakhstan

Candidate of chemical sciences, аssociate professor, аssociate professor of the Department of Chemistry and Ecology of Shakarim University, Semey, Kazakhstan, е-mail: lazzyat.orazzhanova.70@mail.ru

A.N. Klivenko, Shakarim University, Semey, Kazakhstan

PhD, director of Shakarim Lab, Semey, Kazakhstan, е-mail: alexeyklivenko@mail.ru

G.E. Yelemessova, Shakarim University, Semey, Kazakhstan

PhD student of the Department of Chemistry and Ecology of Shakarim University, Semey, Kazakhstan, е-mail: kussainova_g91@mail.ru

References

1. Panova IG, Sybachin AV, Spiridonov VV, Kydralieva K, Jorobekova S, Zezin AB, Yaroslavov AA (2017) Geoderma 307:91-97. https://doi.org/https://doi.org/10.1016/j.geoderma.2017.08.001

2. Devvanshi N, Mishra Sh, Yadav AA (2024) J Xidian Univ 18:1191–1222. https://doi.org/10.5281/Zenodo.12527672

3. Mussabayeva BKh, Kassymova ZhS, Orazzhanova LK, Klivenko AN, Sabitova AN, Bayakhmetova BB (2023) Bull Karaganda Univ Chem Ser 107:102–114. https://doi.org/10.31489/2022Ch3/3-22-11

4. Mussabayeva BKh, Kassymova ZhS, Aldabergenova MA (2020) Bull Karaganda Univ Chem Ser 97:22–29. https://doi.org/10.31489/2020Ch1/22-29

5. Silva ACQ, Silvestre AJD, Vilela C, Freire CSR (2022) Molecules 27:94. https://doi.org/10.3390/molecules27010094

6. Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S (2017) Bioresour Technol 242:295–303. https://doi.org/10.1016/j.biortech.2017.03.119

7. Abidin IZ, Murphy EJ, Fehrenbach GW, Gately N, Major I (2024) Carbohydr Polym Technol Appl 7:100480. https://doi.org/10.1016/j.carpta.2024.100480

8. Chang I, Prasidhi AK, Im J, Cho GC (2015) Constr Build Mater 77:430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116

9. Chang I, Im J, Prasidhi AK, Cho GC (2015) Constr Build Mater 74:65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026

10. Huang J, Kogbara RB, Hariharan N, Masad EA, Little DN (2021) Constr Build Mater 305:124685. https://doi.org/10.1016/j.conbuildmat.2021.124685

11. Adamczuk A, Jozefaciuk G (2022) Molecules 27:2273. https://doi.org/10.3390/molecules27072273

12. Wang R, Ong DEL, Sadighi H, Goli M, Xia P, Fatehi H, Yao T (2025) Polym 27:151. https://doi.org/10.3390/polym17020151

13. Fatehi H, Ong DEL, Yu J, Chang I (2024) Constr Build Mater 411:e132944. https://doi.org/10.1016/j.conbuildmat.2023.132944

14. Fatehi H, Ong DEL, Yu J, Chang I (2021) Geosci 11:291. https://doi.org/10.3390/geosciences11070291

15. Chang I, Prasidhi AK, Im J, Shin HD, Cho GC (2015) Geoderma 253:39–47. https://doi.org/10.1016/j.geoderma.2015.04.006

16. Fatehi H, Abtahi SM, Hashemolhossein H, Hejazi SM (2018) Constr Build Mater 167:813–821. https://doi.org/10.1016/j.conbuildmat.2018.02.088

17. Shabani K, Bahmani M, Fatehi H, Chang I (2022) Geomech Eng 29:535–548. https://doi.org/10.12989/gae.2022.29.5.535

18. Ilman B, Balkis AP (2023) J Build Eng 76:107220. https://doi.org/10.1016/j.jobe.2023.107220

19. Shariatmadari N, Reza M, Tasuji A, Ghadir P, Javadi AA (2020) E3S Web Conf 195:06007. https://doi.org/10.1051/e3sconf/202019506007

20. Firmansyah DA, Somantri AK, Sihombing AV, Mase LZ, Sundara A (2024) Geotech Eng J SEAGS AGSSEA 55:31–37. https://doi.org/10.14456/seagj.2024.13

21. Sreelakshmi P, Gladis R, Rani B, Shajan V, Aparna BR, Swaroop R (2024) Int J Plant Soil Sci 36:577–589. https://doi.org/10.9734/ijpss/2024/v36i105108

22. Renouard S, Hano C, Ouagne P, Blondeau JP, Laine E (2014) Mater Lett 137:269–273. https://doi.org/10.1016/j.matlet.2014.09.030

23. Aguilar R, Nakamatsu J, Ramírez E, Elgegren M, Ayarza J, et al. (2016) Constr Build Mater 114:625–637. https://doi.org/10.1016/j.conbuildmat.2016.03.218

24. Ramdas VM, Mandree P, Mgangira M, Mukaratirwa S, Lalloo R, Ramchuran S (2021) Transp Geotech 27:100458. https://doi.org/10.1016/j.trgeo.2020.100458

25. Getaneh S, Kidanemariam W (2021) Int J Adv Res Biol Sci 8:70–79. https://doi.org/10.22192/ijarbs.2021.08.03.008

26. Katiyar D, Hemantaranjan A, Singh B (2015) Indian J Plant Physiol 20:1–9. https://doi.org/10.1007/s40502-015-0139-6

27. Pandey P, Kumar Verma M, De N (2018) Bull Env Pharmacol Life Sci 7:87–96.

28. Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019) Physiol Mol Biol Plants 25:313–326. https://doi.org/10.1007/s12298-018-0633-1

29. Pal K, Bharti D, Sarkar P, Anis A, Kim D, et al. (2021) Int J Mol Sci 22:10968. https://doi.org/10.3390/ijms222010968

30. Adamczuk A, Kercheva M, Hristova M, Jozefaciuk G (2021) Mater (Basel) 14(24):7724. https://doi.org/10.3390/ma14247724

31. Boukhlifi F, Mamouni FZ, Razouk R (2018) Chitin/Chitosan’s bio-fertilizer: Usage in vegetative growth of wheat and potato crops. In: Chitin-Chitosan – Myriad Functionalities in Science and Technology. IntechOpen, London. Available online: https://www.intechopen.com/chapters/61679 (accessed on 13 December 2021).

32. Karlesky DL, Ramelow G, Ueno Y (1987) Environ Pollut 43:195-207. https://doi.org/10.1016/0269- 7491(87)90156-4

33. Boaventura NF, Sousa TFP, Casagrande MDT (2023) Polym 15:4626. https://doi.org/10.3390/polym15244626

34. Namazi H (2017) Bioimpacts 7(2):73–74. https://doi.org/10.15171/bi.2017.09

35. Inagamova SA, Asrorov UA, Xujanov BE (2023) East Eur J Phys 4:258–266. https://doi.org/10.26565/2312-4334-2023-4-32

36. Grabowska B, Bulwan M, Zapotoczny S, Grabowski G (2012) Polim 57:529–534.

37. Jawad YM, Hadi Al-Kadhemy MF (2021) J Kufa Phys 12:25–36. https://doi.org/10.31257/2018/JKP/2021/130204

38. Elliott JE, Macdonald M, Nie J, Bowman CN (2004) Polym 45:1503–1510. https://doi.org/10.1016/j.polymer.2003.12.040

39. Alsohaimi I, Hafez IH, Berber MR (2021) J Appl Polym Sci 138. https://doi.org/10.1002/app.49915

40. Orazzhanova LK, Kassymova ZS, Mussabayeva BK, Klivenko AN (2020) Eurasian Soil Sci 53(12):1773–1781. https://doi.org/10.31857/S0032180X20120096

41. Bai M, Wilske B, Buegger F, Esperschütz J, Bach M, et al. (2015) Environ Sci Pollut Res 22(7):5444–5452. https://doi.org/10.1007/s11356-014-3772-0

42. Kabanov AV (1998) Adv Drug Deliv Rev 30:49–60. https://doi.org/10.1016/S0169-409X(97)00049-5

43. Kabanov VA (1973) Macromol Chem 8:121–145. https://doi.org/10.1016/B978-0-408-70516-5.50010-6

44. Skorikova EE, Kalyuzhnaya RI, Vikhoreva GA, Galbraikh LS, Kotova SL, et al. (1996) Vysokomol Soedin Ser A 38(1):61–65. https://doi.org/10.1016/B978-0-408-70516-5.50010-6

45. Mun GA, Nurkeeva ZS, Khutoryanskiy VV, Sarybaeva GS, Dubolazov AV (2003) Eur Polym J 39:1687–1691. https://doi.org/10.1016/S0014-3057(03)00065-X

46. Palacios-Torres RE, Santos-Chavez A, Ortega-Ortiz H, Ramírez-Seañez AR, Yam-Tzec JA, et al. (2022) Horticulturae 8:201. https://doi.org/10.3390/horticulturae8030201

47. Ortega-Ortíz H, Gutiérrez-Rodríguez B, Cadenas-Pliego G, Jimenez LI (2010) Braz Arch Biol Technol 53(3):623–628. https://doi.org/10.1590/s1516-89132010000300016

48. Junran Zh, Liu J, Cheng Y, Jiang T, Sun D, Saberian M (2023) Constr Build Mater 403. https://doi.org/10.1016/j.conbuildmat.2023.130419

49. Mohammadian F, Bonab AB, Oliaei M (2024) Environ Earth Sci 83:11891. https://doi.org/10.1007/s12665-024-11891-w

50. Symonds BL, Lindsay CI, Thomson NR, Khutoryanskiy VV (2016) RSC Advances 6:104. https://doi.org/10.1039/c6ra23485b

51. Jamshidi M, Mokhberi M, Vakili AH, Nasehi A (2023) J Transp Geotech 42:101110. https://doi.org/10.1016/j.trgeo.2023.101110

52. Hataf N, Ghadir P, Ranjbar N (2018) J Clean Prod 170:1493–1500. https://doi.org/10.1016/j.jclepro.201

53. Fedorov SA (2024) Eng Bull Don 4:297–304.

54. Panova IG, Khaydapova DD, Ilyasov OL, Umarova AB, Yaroslavov A (2020) Colloids Surf A Physicochem Eng Asp 590:124504. https://doi.org/10.1016/j.colsurfa.2020.124504

55. Berikbol NN, Kassymova ZhS (2024) Synthesis of an interpolyelectrolyte complex from biopolymers and its application to protect forest soils from degradation [Sintez interpolielektrolitnogo kompleksa iz biopolimerov i yego primeneniye dlya zashchity lesnykh pochv ot degradatsii]. Proceedings of the XV National Scientific and Practical Conference "Environmental readings – 2024". Omsk, Russia, 4–5 June 2024. P.385-389. (In Russian)

56. Caprifico A, Polycarpou E, Foot PJS, Calabrese G (2020) Macromol Biosci 21(1):2–27. https://doi.org/10.1002/mabi.202000312

57. Zhong H, Zhao B, Deng J (2023) Small 19(26):1–24. https://doi.org/10.1002/smll.202300961

58. Proença PLF, Carvalho LB, Campos EVR, Fraceto LF (2022) Adv Colloid Interface Sci 305:102695. https://doi.org/10.1016/j.cis.2022.102695

59. Hermanson GT (2008) Bioconjugate Techniques. 2nd ed. Academic Press, Burlington, MA, USA, 1041 p. ISBN: 978-0-12-370501-3

60. Klivenko A, Orazzhanova L, Mussabayeva B, Yelemessova G, Kassymova Z (2020) Polym Adv Technol 31:3292–3301. https://doi.org/10.1002/pat.5053

61. Berikbol N, Klivenko A, Markin V, Orazzhanova L, Yelemessova G, Kassymova Z (2024) Polymers 16:2373. https://doi.org/10.3390/polym16162373

62. Jiang L, Li X, Liu L, Zhang Q (2013) Int J Nanomedicine 8:1825–1834. https://doi.org/10.2147/IJN.S4374

63. Madani W (2023) J Umm Al-Qura Univ Appl Sci 9:285–293.

64. Krayukhina MA, Samoilova NA, Yamskov IA (2008) Russ Chem Rev 77(9):799–813. https://doi.org/10.1070/RC2008v077n09ABEH003750

65. De Oliveira HC, Fonseca JL, Pereira MR (2008) J Biomater Sci Polym Ed 19(2):143–160. https://doi.org/10.1163/156856208783432471

66. Nyström B, Kjøniksen A, Iversen C (1999) Adv Colloid Interface Sci 79:81–103.

67. Alvarado JD, Almeida A, Arancibia M, Carvalho RA, Sobral PJA, et al. (2007) Afinidad 64:605–611.

68. Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2004) Appl Rheol 14:140–147.

69. El-Hefian EA, Elgannoudi ES, Mainal A, Yahaya AH (2010) Turk J Chem 34:47–56. https://doi.org/10.3906/kim-0901-38

70. Do Amaral Sobral PJ, Gebremariam G, Drudi F, De Aguiar Saldanha Pinheiro AC, Romani S, et al. (2022) Foods 11:2692. https://doi.org/10.3390/foods11172692

71. Hwang J, Shin HH (2000) Aust Rheol J 12:175–179.

72. Nikolaeva O, Budtova T, Brestkin Yu, Zoolshoev Z, Frenkel S (1999) J Appl Polym Sci 72(12):1523–1528.

73. Hwang JK, Shin HH (2000) Aust Rheol J 12:175–179.

74. Alves L, Lindman B, Klotz B, Böttcher A, Haake H-M, Antunes FE (2015) Colloid Polym Sci 293(11):3285–3293.

75. Panova IG, Demidov VV, Shulga PS, Ilyasov LO, Butilkina MA, Yaroslavov AA (2020) Land Degrad Dev 32:1022–1033. https://doi.org/10.1002/ldr.3743

76. Cho GC, Im J, Chang I (2016) Sustainability 8:1–23. https://doi.org/10.3390/su8030251

77. Novoskoltseva OA, Loiko NG, Nikolaev YA, Lisin AO, Panova IG, Yaroslavov AA (2022) Polym Int 71:697–705. https://doi.org/10.1002/pi.6289

78. Zezin AB, Mikheikin SV, Rogacheva VB, Zansokhova MF, Sybachin AV, Yaroslavov AA (2015) Adv Colloid Interface Sci 226:17–23. https://doi.org/10.1016/j.cis.2015.06.006

79. Kabanov VA (1998) Adv Drug Deliv Rev 30:49–60. https://doi.org/10.1016/S0169-409X(97)00106-3

Published

2025-12-30

How to Cite

Berikbol, N., Kassymova, Z., Orazzhanova , L., Klivenko, A., & Yelemessova, G. (2025). Synthesis of an interpolyelectrolyte complex from fluorescently labeled chitosan and polyacrylic acid. Chemical Bulletin of Kazakh National University, 117(4), 32–46. https://doi.org/10.15328/cb2025_62

Similar Articles

You may also start an advanced similarity search for this article.