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The dearomatization, denitrification and oxidative desulfurization of commercial diesel
fuels were investigated using glycerol-based deep eutectic solvents. The optimal conditions of
liquid-liquid extraction processes were chosen as room and 90°C temperatures and 3 hours of
mixing time. Ammonium chloride-glycerol, triethylammonium acetate-glycerol and choline
chloride-glycerol were used as extractive solvents in the purification processes. Diesel-Deep
eutectic solvents (Diesel-DESs) were taken as the volume ratios of 1:1 for the dearomatization
and denitrification processes. The volume ratios of Diesel-DESs-H,0, were 1:1:2 for the oxidative
desulfurization. H,0, was selected as the oxidative agent of oxidation desulfurization. Before
and after separation processes, the exploitation properties were studied by ASTM standards and
compared to commercial diesel. All separation processes were controlled by gas chromatography
and *H NMR methods. Based on the NMR analysis, NH,Cl/6Glycerol with H,0, and ChCl/6Glycerol
were the most effective extractive agents for purified diesel samples, from the alkyl aromatic,
naphthenic, and heteroatomic compounds.
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Kommepumanblk  Au3enb  OTbIHAAPbIH - AeapoMaTTaHAablpy, AeHuTpuduKauuanay
JKOHe TOTbIFYNbl KYKipTCi3geHAipy npouecTepi rMUUepuH HerisiHaeri TepeH 3BTEKTUKANbIK
epiTkiwTepai (DES) KonpaHy apkbinbl 3epTrengi. CyMbIK—CYMbIK 3KCTPAKLMA MPOLECTEPIHIH,
OHTalnbl WwapTTapbl 6enme TemnepaTypacbl MeH 90°C KaHe apanacTbipy yaKblTbl 3 cafaT
peTiHae TaHAanAabl. TasapTy npouecTepiHAe 3SKCTpareHTTep peTiHAe aMMOHUI Xaopuai-
TAULLEPUH, TPUITUNAMMOHUI aLEeTaTbiI—FANLEPUH KIHE XONIUH XN0PUAI-FINLEPUH KONAAHbINAbI.
[eapomaTTaHAablipy KaHe AeHUTpUbUKauus npouecTepi yWiH An3enb-DES Kenemaik KaTbiHachl
1:1 6onabl. TOTbIFYAbI KYKipTCi3aeHAipy ywiH ansenb-DES-H,0, Kenemaik KaTbiHacTapbl 1:1:2
Kypagbl. ODS npoueciHae ToTbify areHTi petiHae H,0, TaHganabl. beny npouectepiHe geniH
K9He KeWiH narganaHy Kacvettepi ASTM cTaHZAapTTapbiHa CaMKeC 3epTTein, KOMMeEpPLUANbIK
[M3eNb OTbIHbIMEH CanbiCTbipblabl. Bapabik 6eny npouectepi ras xpomatorpaduacsl xaHe "H
AMP agicTepimeH bakbinaHabl. IMP TangaybiHbiH, HaTUXKenepi 6oibiHwa, NH4Cl/6Glycerol +
H20; »aHe ChCl/6Glycerol TazapTbinfaH AuU3eNb yArinepiHeH ankua apomaTTbl, HaGTEHAIK KaHe
reTepoaToMapbl KOCbINbICTapAbl KOAA €H TUiMAi SKcTpareHTTep 6onbin aHblKTanabl. beny
npoueci GC agicimeH ae 6akblnaHabl.

TyliH cespep: TepeH 3BTEKTUKA/bIK ePiTKil; rULEpPUH; An3enb; ra3 xpomaTtorpapuacsl;
ASTM ctangapTTapsl; SDG 6; SDG 13.
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Mpoueccbl geapomaTusaunmn, AeHUTPUPUKALUM U OKUCAUTENBbHOU Aecynbdypusauunm
KOMMEpPYEeCKoro [Au3esbHOro TOM/AMBAa C MCNO/Mb30BaHWEM [NyOOKMX 3BTEKTUYECKMUX
pacTBOpuTeNeit Ha OCHoBe rauuepuMHa ObinnM uccnefoBaHbl. B KayecTBe ONTUMANbHbIX
YCNOBUI KUAKOCTHO-KUAKOCTHOW 3SKCTpakuuu 6blan BbIbpaHbl KOMHATHasa TemnepaTypa
n Temnepatypa 90°C, a TaKe Bpema nepemellMBaHuA 3 vyaca. B npoueccax OYMCTKM B
KayecTBe IKCTPaAKLMOHHbIX pacTBopuTenei MCNonb30BaZNCb CUCTEMbl X/J0pUA aMMOHUA-
rANLEPUH, aueTaT TPUITUNAMMOHUA-TANLEPUH U XNOPWUA, XONUHA-TAMLEpPUH. [na npoueccos
AeapomaTtu3aumm U aeHUTpudUKauum ausesnbHoe TOMAMBO W TNyBOKMEe 3BTEKTUYECKue
pacTBOpUTENM  UCNONb30BaAWCb B 0O6bEMHOM cooTHowenuu 1:1. [na npouecca
oKMCAUTENBHOW Aecynbdypu3aum 06bEMHOE COOTHOLWEHWE AU3ebHOTO TONIMBa, rMyboKoro
3BTEKTUYECKOro pacteoputens u H,0, coctasnsano 1:1:2. B kauecTse OKMC/IMTENA B Npouecce
OKMCAUTENbHOMN Aecynbdypusaumm ncnonbsosanacs H,0,. [lo M nocne Nnpoueccos pasgeneHus
3KCMNyaTalMOHHbIE CBOMWCTBA TOM/IMBA M3y4asnUCb B COOTBETCTBUMU CO cTaHAapTamu ASTM u
CPaBHMBAINCL C XapPaKTEPUCTUKAMMU KOMMEPYECKOro Au3enbHOro tonamsa. Bce npoueccol
pasaeneHnsa KOHTPONMPOBAANCL METOA4aMM ra3oBoi xpomaTtorpadum uH AMP-cnekTpockonuu.
Ha ocHoBaHuu aHanmsa AMP 6bin10 ycTaHoBaeHo, YyTo NH4Cl/6Glycerol ¢ H,0, n ChCl/6Glycerol
ABnAloTCA Hanbonee 3pPEKTUBHBIMU IKCTPAKLMOHHBIMU areHTaMu A1 OYUCTKU AU3E/IbHOTO
Tonnuea, obecneuuBas ypaneHue anKMAAPOMATUYECKUX, HAadTEHOBbIX M reTepoaTOMHbIX
coeiUHEHUN.

KnioueBble cnoBa: rnyboKUI 3BTEKTUYECKUI pacTBOpPUTEb;
TONANBO; razoBas xpomatorpadus; ctaHgapTtel ASTM; SDG 6; SDG 13.
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1. Introduction

Diesel engines are internal combustion engines, known for
their lower fuel consumption than other analogs. They have
numerous applications, including construction, underground
mining, power generation and farming. Besides, they are used
in various land and sea transport systems. However, controlling
diesel motor emissions is important [1-5]. Petroleum diesels
have nitrogen, sulfur, oxygen contents and aromatic
hydrocarbons that are burned to produce hazardous pollutants
suchas SO _and NO . On the other hand, aromatic hydrocarbons
produce the output of soot and residues [6-9]. Reducing
aromatic and heteroaromatic compounds in fuels s
conventionally through a  process
hydrotreatment. The drawbacks of traditional hydrotreatment
have contributed to the development of more “greener”
purification methods [10,11]. A class of solvents known as ionic
liguids was investigated for separating aromatic and
heteroaromatic compounds from fuels[12-14]. The poor
biodegradability, toxicity, complex synthesis, and high
production cost are the shortcomings of their application in
industry. Therefore, selective and eco-friendly solvents have
been searched by scientists.

Deep eutectic solvents (DESs) are a new generation of
solvents formed by a eutectic mixture of a hydrogen bond
donor (HBD) and a hydrogen bond acceptor (HBA). They have
good chemical and thermal stability. The raw materials of DESs
are cheap, easily obtained, and environmentally friendly [15-
18]. DESs have a wide range of applications in chemistry. Using
DESs in chemical separation is interesting for producing clean
motor fuels [19]. In many research papers, polymeric, metal
complex, and acidic-based DESs were investigated as an
extractive agent for the purification of organic sulfides [20-24].

achieved called

Ammonium, phosphonium, and choline chloride-based deep
eutectic solvents also showed sensitivity to the denitrification
of fuels [25,26]. Moreover, several studies have also studied the
liquid-liquid extraction (LLE) of aromatic compounds from fuels
by DESs [27,28].

In the presented work, a new type of glycerol-based DESs
[NH,CI/6Glycerol (DES1), [TEAH]* [AcO]/6Glycerol (DES2) and
ChCl/6Glycerol (DES3)] were prepared and investigated as an
extractive solvent for aromatic, sulfur and nitrogen compounds
from the diesel fuel at room and 90°C temperatures. The
optimal mixing time was chosen as 3 hours. The physical and
chemical properties of diesel fuels were determined according
to the ASTM standards. The separation efficiencies of each
compound class were studied by *H NMR and GC analysis.

2. Experiment

All chemicals were obtained from Merck (Germany) and
used as received. The tested diesel fuel was purchased at a fuel
station in Azerbaijan.

2.1. Preparation of glycerol based DESs

DESs were prepared by mixing hydrogen bond donor
(HBD) glycerol with hydrogen bond acceptors (HBAs) as choline
chloride, ammonium chloride or triethylammonium acetate.
The preparation of eutectic mixtures was carried out in a screw-
capped bottle by magnetic stirring (800 rpm) at 20°C. According
to our previous work, the optimal molar ratio of the HBA and
HBD was selected as 1:6 [29]. The process was considered
complete when the two components transformed into a
homogeneous transparent liquid visually during the 2 hours.

2.2 LLE experiments

The dearomatization and denitrification of diesel fuels
were carried out at room temperature for 3 hours. The volume
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ratios of DESs and diesel fuel were 1:1. The oxidation
desulfurization (ODS) of real fuels was done at 90°C in 3 hours.
The oxidative agent of ODS was 30% H,0,. The optimal
conditions of this process were at the volume ratio of DESs/
Fuel/H,0, = 1:1:2 [30].

2.3 Analytical methods

The amounts of sulfuric, nitrogen and aromatic compounds
after LLE were determined using an NMR spectrometer
(UltraShield Magnet) AVANCE 300 MHz (300 MHz for the 'H) and
a GC Agilent chromatography. The following formula calculates
the extraction efficiencies:

Y (%)=C,~C/C,x100%

Y (%) — removal efficiencies of aromatic, nitrogen and
sulfur compounds; C, - the initial concentration, C — the
concentration after liquid-liquid extraction of each compound.

The exploitation properties of diesel and cleaned diesel
samples were studied according to the ASTM standards. The
cetane number and cetane index were calculated according to
the literature [31].

The kinematic viscosity (by Ostwald-Pinkevitch
viscometer), density (by pycnometer), corrosion properties (by
copper corrosion, at 3 hours and 50°C), flash point (by Pensky-
Marten’s apparatus) of fuel samples were studied according to
the ASTM D445, ASTM D2320, ASTM G31 and ASTM D93.

3. Results and Discussion

The three types of glycerol-based DESs were used for the
separation of aromatic and heteroatomic hydrocarbons from
commercial diesel fuels: NH,Cl/6Glycerol (DES1), [TEAH]" [AcOJ
/6Glycerol (DES2) and ChCl/6Glycerol (DES3). The
dearomatization, denitrification processes of diesel fuel were
carriedoutintheroom, but ODS processesat 90°Ctemperatures.
DESs/Diesel fuels or DESs/Diesel fuels/ H,0, were taken as 1:1
and 1:1:2 molar ratios.

3.1 The results of liquid-liquid extraction

First, the content of commercial diesel fuel, as well as
diesel fuels purified using DESs, was studied. Amount of
paraffinic, naphthenic, aromatic hydrocarbons in commercial
diesel and diesel samples after LLE by DESs 1-3 were calculated
by HNMR[32]. In Tablel, the percentage content of
hydrocarbons in diesel samples was given.

As can be seen from Table 1, the purification of diesel with
DES1(H,0,) and DES3 is more effective for the separation of the
aromatic hydrocarbons. The NMR results showed that the
percentage amount of aromatic hydrocarbons reduced from
8.87 to 4.58 with DES1 (H,0;) and from 8.87 to 4.84 with DES3.
Based on the GC results for sample 1 (LLE by DES3) and sample
2 (LLE by DES1), the removed individual naphthenic, aromatic
and heteroaromatic hydrocarbons were given in Tables 2 and 3.

We observed a negative influence (or opposite direction
of extraction) on phase equilibrium after 3 hours for volume
ratios of 1:1 and 1:1:2.

Table 1 — The percentage content of hydrocarbons in diesel
samples

The percentage content of hydrocarbons, %

Diesel samples The aromatic The naphthenic The paraffinic

compounds  compounds compounds
Diesel 8.87 38.10 53.03
Diesel (DES1) 8.61 34.45 56.94
Diesel (DES2) 8.68 39.12 52.20
Diesel (DES3) 4.84 32.31 62.85
Diesel (DESl+HZOZ) 4.58 35.11 60.31
Diesel (DESZ+H202) 7.93 36.71 55.36
Diesel (DES3+HZOZ) 5.00 35.00 60.00

As can be seen from Table 2, mainly alkyl naphthenic, alkyl
aromatic and alkyl heteroatomic compounds were purified
from sample 1 and n-paraffins, which are a very important
component for diesel fuels, were not affected by DESs. The
presence of n-paraffins in diesel fuel after LLE, can be explained
by the lack of centers in this class of hydrocarbons, which could
interact with DESs.

It can be seen from Table 3, in sample 2, alkyl naphthene,
alkyl aromatic and alkyl heteroatomic compounds were
purified. In Figures 1-3, chromatograms of commercial diesel
and diesel samples 1 and 2 after LLE extractions were given.

Figure 1 — The chromatogram of diesel fuel

Figure 2 — The chromatogram of diesel after LLE by DES3 at
room temperature
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Figure 3 — The chromatogram of diesel after LLE by DES1
at 90° C temperature

3.2 The studying of exploitation properties of diesel fuels

The exploitation properties of diesel samples after
purification at room and 90°C were investigated and compared
according to the ASTM. The relative density (g/cm?) at 20°C of
diesel samples after LLE is shown in Figure 4.

Figure 4 — The relative densities of commercial diesel and
treated diesel samples by DESs

As shown in Figure 4, the density of purified fuel samples
using DESs at room and 90°C temperatures increased slightly
(0.003 and 0.002 accordingly) compared to diesel.

Figures 5 and 6 demonstrate the dependence of
viscosity (mm?/s) at 20°C and 40°C after the LLE. As can be seen
from Figure 6, the viscosity at 40°C for the diesel sample after
LLE by DES3 and DES2 showed the best results. So, the viscosity
decreased from 5.1651 to 4.8042 at room temperature and
from 3.1781 to 3.091 mm?/s at 40°C (for room temperature
extraction). This can be explained by the release of relatively
high-viscosity alkyl naphthene, alkyl aromatic and alkyl
heteroatomic compounds from the content of diesel fuels.

Figure 5 — Viscosity of commercial diesel and
diesel samples at 20°C

Figure 6 — Viscosity of commercial diesel and
diesel samples at 40°C

Sulfur content in fuels was determined according to the
ASTM D1266 after purifications at room and 90°C temperatures.
Based on the obtained results, we can note that sulfur content
(ppm) decreased in both purification conditions. The higher
result was observed at room temperature by DES3 (amount of
sulfur decreased from 50 up to zero ppm, Figure 7).

Figure 7 — The sulfur content of commercial diesel and
diesel samples

BecTHuK KasHY. Cepua xummyeckana. — 2025. — Ne 4
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Figure 8 — The corrosion activities of diesel samples before and after LLE

The corrosion activities of diesel samples before and after
LLE are given in Figure 8. As seen from the figure, there is a
significant decrease in corrosion rate in fuel samples after LLE
compared with commercial diesel. It is obvious that DES3
exhibits a more effective result for the anticorrosion ability of
cleaned fuel at room temperature. After LLE at 90°C by DES1,
the lowest corrosion rate was observed in both purification
conditions. The removal of corrosive sulfur, nitrogen and
alkylaromatic compounds from the content of commercial
diesel fuel can explain the indicated results.

In the Table 4 was showed flash, cloud, pour points, cetane
number and cetane index of investigated fuel samples.

According to Table 4, the flashpoint is increased after each
extraction process. The cloud point and pour point of cleaned
diesel samples by DESs decreased slightly in each room
temperature extraction condition. The fuels treated by DES3 at
room temperature exhibited the lowest cloud (-4°C) and pour
(-17°C) temperatures. The diesel fuel cleaning with DES2 at 90°C
showed +2°C cloud point and -19°C pour points compared to
commercial diesel (accordingly +10 and -12°C). As seen, the
pour point decreased by 3-5 units, despite an increase of the
amount of paraffinic hydrocarbons. It may be connected to the
extraction of high molecular mass alkyl heteroatomic, alkyl
naphthenic and alkyl aromatic compounds. The higher diesel

index of fuel was observed at room temperature by DES1. The
obtained results can be explained by the removal of short as
well as long alkyl chain naphthenes and aromatic hydrocarbons
from the composition of commercial diesel fuel.

The proposed separation mechanism of pyridine by the
choline chloride:glycerol based DES is illustrated below.

3.3. Regeneration and recycling of solvent

Considering the future industrial importance, DESs must
be regenerated for separation processes. After the purification
of diesel fuel samples, diethyl ether was used for the recycling
of DESs. The volume ratios of DESs/diethyl ether were taken as
1:1. The regeneration times for DESs are 3 hours at room
temperature. We would like to note that, after the fifth
regeneration occurs, there is a decrease in volume and
deterioration of solvent purity. The purification of DESs was
controlled by NMR *H analysis. Below is a schematic illustration
of the liquid-liquid extraction process.

Table 4 — Some physical properties of commercial diesel and diesel samples

Parameters ASTM Methods Experimental data
) LLE at room temperature LLE at 90° C temperature

Diesel DES1 DES2 DES3 DES1 DES2 DES3
Flash point, °C, min. D93 79 85 86 95 83 95 97
Cloud point, (°C) D2500 10 0 -2 -4 4 2 6
Pour point, (°C) D2500 -12 -15 -17 -17 -12 -19 -18
Cetane number, min. D975-14 47.11 50.12 46.55 55.69 53.87 49.14 53.50
Diesel Index - 53.705 58.582 51.358 61.954 57.170 54.512 58.779
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Scheme 1 — A basic illustration of LLE by DESs

3.4. An environmental or economic assessment of the
DESs

It should be noted that glycerin is a by-product of biodiesel
production; its disposal is one of the actual problems.
Ammonium chloride is one of the cheapest salts produced by
thousands of tons per year. The choline chloride is also
industrially produced as a supplement (typically 60-70%) for
compound feed, preventing fatty infiltration of the liver in
animals and birds, improving their growth and productivity. All
DES components are environmentally safe and biodegradable.

4. Conclusions

The combined processes of dearomatization,
denitrification and oxidative desulfurization of commercial
diesel fuel studied by a new type of glycerol-based DESs.
Ammonium chloride, triethylammonium acetate ([TEAH]*[AcQO]’)

and choline chloride were selected as hydrogen bond acceptors
of DESs. The molar ratios of HBA/HBD were chosen as 1:6.
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